

1172 SW 30th Street, Suite 500 • Palm City • Florida • 34990 (772) 286-8030 • www.mackenzieengineeringinc.com

Memorandum

To: Dylan O'Berry, Art of Engineering, Inc.

From: Shaun G. Mackenzie, P.E.

Date: August 27, 2025

Re: Decorative Concrete Specialists ESAL Projections

INTRODUCTION

MacKenzie Engineering and Planning, Inc. (MEP) was retained by Art of Engineering, Inc to determine the ESAL value of the concrete truck and its impact to Commerce Centre Drive.

The roadway segment location is shown in Figure 1.

Commerce Centre Dr

Commerce Lakes Dr

Martin, Co Line

Figure 1 – Roadway Segment Location Map

Legend:

Location - From Glades Cut-Off Road to Reserve Boulevard

ESAL CALCULATION

An ESAL(Equivalent single axial load) is calculated by using Table D.4 (based on single axles flexible pavement with p_t 2.5) and Table D.5 for tandem axles, and Table D.6 for triple axles from AASHTO's "Guide for Design of Pavement Structures (1993)". A structural number of 3 was considered.

ESAL calculations for empty and fully loaded concrete trucks are shown in the below Table 1.

Table 1. 18-kip ESAL Projections for Empty and Fully Loaded Concrete Truck

	Weight of Concrete Truck in lbs	Number of Axles	Steer Axle Load in lbs	ESAL (Equivalent Single Axle Load)	Tandem /Triple Axle Load in lbs (each)	ESAL (Equivalent Single Axle Load)	Total ESAL (Equivalent Single Axle Load)
Empty Concrete Truck	30,000	3	9,000	0.09	21,000	0.20	0.29
Fully Loaded Concrete Truck	70,000	4	14,000	0.40	56,000	1.90	2.30

ESAL PROJECTIONS

The 18-kip ESAL of empty and fully loaded concrete truck were multiplied with the project trips to estimate the total ESALs on a daily, weekly, and annual basis. The ESAL calculations are shown in the below Table 2.

Table 2. Daily, Weekly, and Annual ESAL projections

	ESAL (Equivalent Single Axle Load)	Project Trips (Trucks only)	ESAL Per Day	ESAL Per Week	ESAL Per Year
Empty Concrete Truck	0.29	54	15.7	79	4,108
Fully Loaded Concrete Truck	2.30	54	124.2	621	32,292
	36,400				

The total ESALs were determined from annual ESALs from Table 2 and estimating the impacts for a 10-year period. The resulting 10-year ESALs were used to calculate the ESALs for Commerce Centre Drive, north and south of Commerce Lakes Drive. The ESALs calculations for Commerce Centre Drive are shown below Table 3.

Table 3. ESALs for Commerce Centre Drive

	Total ESAL per year	Total ESAL per 10-years	Assigned Project trips	ESAL Impact
Commerce Centre Drive North of Commerce Lake Drive	36,400	364,000	40%	145,600
Commerce Centre Drive South of Commerce Lake Drive	36,400	364,000	60%	218,400

CONCLUSION

The total ESAL impact on Commerce Centre Drive north and south of the Commerce Lake Drive is 145,600 and 218,400 ESALs, respectively.

EXHIBITS

Exhibit 1 - Trip Generation - Decorative Concrete Specialists

Exhibit 2 - Traffic Assignment - Decorative Concrete Specialists

Exhibit 3 - AASHTO - Tables D.4, D.5, and D.6

If you have any questions, please do not hesitate to contact Shaun Mackenzie at shaun@mackenzieengineeringinc.com or (772) 834-8909.

Sincerely,

Shaun G. MacKenzie, P.E.

Transportation Engineer

Florida Registration Number 61751

Shaun MacKenzie

Engineering Business Number 29013

1172 SW 30th Street, Suite 500 • Palm City • Florida • 34990 (772) 286-8030 • www.mackenzieengineeringinc.com

Exhibit 1 - Trip Generation

	Tru	cks	Site Em	ployees	Truck	Drivers	Deliv	eries		Total Trips	
Time	Enter	Exit	Enter	Exit	Enter	Exit	Enter	Exit	Total	Enter	Exit
7:00			8		12				20	20	0
8:00		11			6		1	1	19	7	12
9:00		7					1	1	9	1	8
10:00	7	7					2	2	18	9	9
11:00	11	11					1	1	24	12	12
12:00			2	2			1	1	6	3	3
13:00	11	11					1	1	24	12	12
14:00	7	7					1	1	16	8	8
15:00	7					6	1	1	15	8	7
16:00	11			8		12	1	1	33	12	21
17:00	·								0	0	0
Total	54	54	10	10	18	18	10	10	184	92	92

Estimated Truck Fill Time ~ 5 mins

= 12 truck per hour

Total Service Time ~ 10 mins per truck

= -1 truck during initial loading time

Exhibit 2 - Traffic Assignment

Exhibit 3.1 - Table D.4 Axle load equivalency factors for flexible pavements single axles and p_t 2.5

D-6

Design of Paveme

Table D.4. Axle load equivalency factors for flexible pavements, single exles and pt 2.5.

Axle	Pevement Structurel Number (SN)								
(kips)	1	2	3	4	(5)	в			
2	.0004	.0004	.0003	.0002	.0002	.0002			
4	.003	.004	.004	.003	.002	.002			
6 9 8	.011	017	.017	.013	.010	.009			
0.8	.032	.047	051	.041	.034	.031			
10	.078	.102	.118	.102	.088	.080			
12	.168	.198	.229	.213	.189	.176			
14	.328	.358	.399	.388	.360	.342			
16	.591	.613	.646	.645	.623	.606			
18	1.00	1.00	1.00	1.00	1.00	1.00			
20	1.61	1.57	1.49	1.47	1.51	1.55			
22	2.48	2.38	2.17	2.09	2.18	2.30			
24	3.69	3.49	3.09	2.89	3.03	3.27			
26	5.33	4.99	4.31	3.91	4.09	4.48			
28	7.49	6.98	5.90	6.21	5.39	5.98			
30	10.3	9.5	7.9	6.8	7.0	7.8			
32	13.9	12.8	10.5	8.8	8.9	10.0			
34	18.4	16.9	13.7	11.3	11.2	12.5			
36	24.0	22.0	17.7	14.4	13.9	15.5			
38	30.9	28.3	22.6	18.1	17.2	19.0			
40	39.3	35.9	28.5	22.5	21.1	23.0			
42	49.3	45.0	35.6	27.8	25.6	27.7			
44	61.3	55.9	44.0	34.0	31.0	33.1			
46	75.5	68.8	54.0	41.4	37.2	39.3			
48	92.2	83.9	65.7	50.1	44.6	46.5			
50	112.	102.	79.	60.	53 .	56.			

Exhibit 3.2 - Table D.5 Axle load equivalency factors for flexible pavements tandem axles and p_t 2.5

Table D.5. Axia load aquivalancy factors for flaxible pavaments, tendem axias and p_tof 2(5)

	Axle	Axle Pevement Structural Number (SN)							
	(kips)	1	2	3	4	,2	6		
	2 4	.0001	.0001	.0001	.0000	.0000	.0000		
	4	.0005	.0005	.0004	.0003	.0003	.0002		
	6	.002	.002	.002	.001	.001	.001		
	8	.004	.006	.005	.004	.003	.003		
	10	.008	.013	.011	.009	.007	.006		
	12	.015	.024	.023	.018	.014	.013		
	14	.026	.041	.042	.033	.027	.024		
	16	.044	.065	.070	.067	.047	.043		
	18	.070	.097	.109	.092	.077	.070		
	20	.107	.141	.162	.141	.121	.110		
21	22	.160	.198	0.20 .229	.207	.180	.166		
	24	.231	.273	.315	.292	.260	.242		
	26	.327	.370	.420	.401	.364	.342		
	28	.451	.493	.548	.534	.495	.470		
	30	.611	.648	.703	.695	.658	.633		
	32	.813	.843	.889	.887	.857	.834		
	34	1.06	1.08	1.11	1.11	1.09.	1.08		
	36	1.38	1.38	1.38	1.38	1.38	1.38		
	38	1.75	1.73	1.69	1.68	1.70	1.73		
	40	2.21	2.16	2.06	2.03	2.08	2.14		
	42	2.76	2.67	2.49	2.43	2.51	2.61		
	44	3.41	3.27	2.99	2.88	3.00	3.16		
	46	4.18	3.98	3.58	3.40	3.55	3.79		
	48	6.08	4.80	4.25	3.98	4.17	4.49		
	50	8.12	5.76	6.03	4.64	4.86	5.28		
	52	7.33	8.87	6.93	6.38	5.63	6.17		
	54	8.72	8.14	6.96	6.22	8.47	7.16		
	56	10.3	9.6	8.1	7.2	7.4	8.2		
	58	12,1	11.3	9.4	8.2	8.4	9.4		
	60	14.2	13.1	10.9	9.4	9.6	10.7		
	62	16.5	15.3	12.6	10.7	10.8	12.1		
	64	19.1	17.6	14.5	12.2	12.2	13.7		
	66	22.1	20.3	16.6	13.8	13.7	15.4		
	68	25.3	23.3	18.9	15.6	15.4	17.2		

			Ad	100		×			

Exhibit 3.3 - Table D.6 Axle load equivalency factors for flexible pavements triple axles and p_t 2.5

Teble D.6. Axia losd equivalency factors for flexible pavements, triple axies and ptof 2.5.

Axle	Pavement Structural Number (SN)									
Load - (kips)	1	2	3	4	5	8				
2	.0000	.0000	.0000	.0000	.0000	,0000				
4	.0002	.0002	.0002	.0001	.0001	.0001				
5	.0006	.0007	.0005	.0004	.0003	.0003				
. 8	,001	.002	.001	.001	.001	.001				
10	.003	.004	.003	.002	.002	.002				
12	.005	.007	.005	.004	.003	.003				
14	.008	.012	.010	.008	.006	.005				
18	.012	.019	.018	.013	.011	.010				
18	.018	.029	.028	.021	.017	.018				
20	.027	.042	.042	.032	.027	.024				
22	.038	.058	.060	.048	.040	.035				
24	.053	.078	.084	.058	.057	.051				
26	.072	.103	.114	.095	.080	.072				
28	.098	.133	.151	.128	.109	.099				
30	.129	.189	.195	.170	.145	.133				
32	.189	.213	.247	.220	.191	.175				
34	.219	.268	.308	.281	.245	.228				
38	.279	.329	.379	.352	.313	.292				
38	.352	.403	.451	.435	.393	.388				
40	.439	.491	.554	.533	.487	.459				
42	.543	.594	.851	.644	.597	.587				
44	.586	.714	.781	.769	.723	.892				
45	.811	.854	.918	.911	.868	.838				
48	.979	1.015	1.072	1.069	1.033	1,005				
50	1.17	1.20	1.24	1.25	1.22	1.20				
52	1.40	1.41	1.44	1.44	1.43	1.41				
54	1.65	1.66	1.88	1.58	1.55	1.68				
58	1.95	1.93	1.90	1.90	1.91	1.93				
58	2.29	2.25	2.17	2.16	2.20	2.24				
60	2.67	2.60	2.48	2.44	2.51	2.58				
52	3.09	3.00	2.82	2.78	2.85	2.95				
84	3.57	3.44	3.19	3.10	3.22	3.35				
04	5.07	2.7.	2.04	2 47	2 42	3.81				