WELCOME

Crosstown Parkway
Noise Monitoring Study Phase 1 & 2

City of Port St. Lucie, FL Special City Council Meeting | May 17, 2021, 9:30 AM

PURPOSE OF THIS MEETING

WHAT IS NOISE?

- Noise is a sound that is unpleasant, undesired or interferes with one's hearing of something
- "Unwanted" one's perception of sound is subjective; Some sounds will annoy one person and not another and can interfere with sleep and/or outdoor conversations

NOISE FUNDAMENTALS

How is Noise Measured?

- Decibel (db): The unit of measurement for noise
- A-weighted decibel (dBA): Scale that most closely matches how humans perceive sound
- L_{eq}: The level of a constant sound over a specific time period that has the same sound energy as the actual (unsteady) sound over the same period (preferred measurement descriptor, used by FHWA)
- L_{peak}: The highest instantaneous sound level, in decibels, with no time weighting

Source: Federal Highway Administration

GENERAL NOISE FUNDAMENTALS

Human Perception of Noise Level Changes:

- 3 dBA (increase or decrease): Minimum change most humans typically perceive
- 5 dBA (increase or decrease): Clearly noticeable change to almost everyone
- 10 dBA (increase or decrease): Perceived as twice as loud (or half as loud)

3 dBA Traffic Noise Rules:

- Distance: Noise reduces by 3 dBA per-doubling of distance
- Speed: Increase speed by 10 mph, noise increases by 3 dBA
- Traffic Volumes: Each time the number of vehicles doubles, overall noise generally increases by 3 dBA

TRAFFIC NOISE

Traffic Noise Sources:

Causes of Traffic Noise:

- The loudness of traffic noise is generally increased by proximity to the highway, heavier traffic volumes, higher speeds, and a large number of trucks
- · Vehicle noise is a combination engine, exhaust, and tire noise
- Defective/Modified mufflers and other faulty/modified vehicle parts can also increase the loudness of traffic noise
- Any condition, such as a steep incline, that causes heavy laboring of motor vehicle engines can also increase traffic noise levels

SOUND BARRIERS

Sound Barriers:

- A sound barrier is a solid obstruction built between the highway to reduce the loudness of highway traffic noise
- Sound barriers can be solid walls or can be constructed linear mounds of dirt called earth berms; Berms of the same height as solid walls can provide slightly more noise reduction due to their wider tops and their soft, grass-covered sloping sides

How Sound Barriers Work?

- A sound barrier reduces noise from a highway by absorbing, reflecting, or forcing the sound to take a longer path over and around the barrier; Sound is energy that decreases in intensity as it travels away from its point of origin
- A sound barrier can generally achieve a 5 dBA noise level reduction, when it is tall enough to break the line-of-sight from the highway (source) to the resident (receptor)

Source: National Highway Institute

FDOT TRAFFIC NOISE CRITERIA

Approach Criteria:

- Approaching the criteria is defined as within 1 decibel dBA of the appropriate FHWA Noise Abatement Criteria (NAC)
- For Activity Category B (includes the exterior impact for residences) the approach NAC level for this activity category is 66 dBA; No NAC criteria exist for the interior areas of residential land uses
- For Activity Category B a level of 65.9 dBA would not be considered to have approached or exceeded the abatement criterion and abatement consideration would not be required

Traffic Noise Impacts:

- Occurs when the modeled future highway traffic noise levels for the worst case noise condition (usually Level
 of Service (LOS) "C") approach or exceed the NAC
- Traffic noise impact also occurs when modeled future highway traffic noise levels substantially exceed the existing highway traffic noise level, even though the modeled levels may not exceed the NAC; A substantial increase occurs when the increase over existing conditions (measured or predicted) is 15 dBA or greater

PHASE 1-NOISE MONITORING STUDY

- The City met with concerned residents prior to and during implementation of the Crosstown Parkway "Landscape Enhancements" program
- Post-construction traffic noise monitoring was conducted along the Crosstown Parkway corridor, from east of I-95 to the west approach of the Crosstown Parkway Bridge over the North Fork of the St. Lucie River
- 36 noise receptors were monitored from east of I-95 to the west approach of the Crosstown Parkway Bridge over the North Fork of the St. Lucie River were monitored. These included:
 - 11 sites between I-95 and Florida Turnpike (SR91)
 - 12 sites between Bayshore Boulevard and Manth Lane
 - 11 sites between Manth Lane and the west approach of the Crosstown Parkway Bridge
 - 2 second level receptors along the corridor
- Noise monitoring took place on eight days (Tuesdays through Thursdays) between September 15, 2020 and October 14, 2020 and were conducted during the AM (6:30 am & 9:30 am) and PM (3:30 pm and 6:30 pm) peak traffic hours

PHASE 1-NOISE MONITORING STUDY

PHASE 1-SHORT-TERM MONITORING

- Contacted property owners for permission
- Two TSI Quest NoisePro DLX Type 2 Personal Noise Dosimeters, set at a height of five feet (to approximate average human ear height) were used to record 30-minute noise monitoring periods (30-minutes is defined in FDOT Noise Abatement Criteria to represent the hourly dBA Leq)

- Traffic counts were recorded by vehicle type (car, medium truck, heavy truck, bus and motorcycle) using a TDC-ULTRA Traffic Data Collector; Traffic Counts were recorded at 1-minute intervals
- A portable electronic traffic speed counter supplemented by driving in traffic between sessions, was used to collect average vehicle speeds

PHASE 1-MONITORING RESULTS

Noise Levels:

Majority of the receptors were measured between 55 dBA Leq and 59.9 dBA Leq. In summary;

- 6 receptor sites were measured between 50 dBA Leq and 54.9 dBA Leq
- 22 receptor sites were measured between 55 dBA Leq and 59.9 dBA Leq
- 8 receptor sites were measured between 60 dBA Leq and 64.9 dBA Leq

PHASE 1-MONITORING RESULTS

Noise Levels at Documented Noise Concern Sites:

- The City has received noise concerns from 11 residences located between Manth Lane and the Crosstown Parkway Bridge
- All monitored noise levels were less than predicted noise levels w/the exception of NR15 where monitored levels (64.8 dBA Leq) exceeded 2014 predicted levels (62.2 dBA Leq) by 2.6 decibels
- NR18 was not included in the 2014 study
- Noise measurements at the 11 receptor sites east of Manth Lane (areas of documented noise concerns) ranged between 53.8 dBA Leq at NR18 and 64.8 dBA Leq at NR15

Receiver #	Monitored Date	Start Time	End Time	2020 Receiver dB(A) Leq (30 Minutes)	2014 Noise Study Receiver #	2014 Noise Study Receiver dB(A) for Build (2037) with Design Changes	dBA Leq Difference
NR13	9/15/2020	3:00 PM	3:34 PM	58.1	B67	62.0	(3.9)
NR14	9/15/2020	5:00 PM	5:30 PM	55.0	B79	62.8	(7.8)
NR15	9/15/2020	4:40 PM	5:14 PM	64.8	B82	62.2	2.6
NR16	9/15/2020	4:40 PM	5:14 PM	62.6	B90	65.6	(3.0)
NR17	9/29/2020	5:10 PM	5:44 PM	57.5	B91	64.6	(7.1)
NR18	9/29/2020	5:10 PM	5:44 PM	53.8	N/A	N/A	N/A
NR19	9/15/2020	6:00 PM	6:34 PM	56.7	В93	65.4	(8.7)
SR33	9/16/2020	4:10 PM	4:44 PM	56.2	B5	60.3	(4.1)
SR34	9/30/2020	6:15 PM	6:49 PM	57.3	B10	61.4	(4.1)
SR35	9/15/2020	3:00 PM	3:34 PM	54.3	B21	60.2	(5.9)
SR36	9/15/2020	6:00 PM	6:34 PM	53.8	B43	61.6	(7.8)

PHASE 1-MONITORING RESULTS

Traffic Data:

- A consistent law enforcement presence was observed during most monitoring periods with average vehicle speeds ranging between 47 and 50 mph with one monitoring session averaging 51 mph
- A Level-of-Service (LOS) C traffic volume of 2,720 (6% trucks) was evaluated in the 2014 noise study to predict future noise levels; LOS C traffic generally represents the maximum amount of hourly traffic that can operate at free-flow conditions at or near the posted speed limit
- Traffic counts approached or exceeded 2,720 total vehicles at:
 - SR20 (60.6 dBA Leq) 2,424 total vehicles (3% trucks)
 - SR28 (60.2 dBA Leq) 2,568 total vehicles (5% trucks)
 - NR17 (57.5 dBA Leg) & NR18 (53.8 dBA Leg) 2,648 total vehicles (1% trucks)
 - NR14 (55.0 dBA Leq) 2,698 total vehicles (3% trucks)
 - NR1 (60.0 dBA Leg) 2,852 total vehicles (5% trucks)

PHASE 1-CONCERNS RESIDENTS SHARED

- Evening & early morning noise levels are the most problematic
- Consistent law enforcement presence during the day & early evening helps regulate noise during these hours
- Impossible to hold outdoor conversations with neighbors
- Traffic movements at the Crosstown Parkway & Floresta Drive intersection make it difficult to have conservations in their backyards; Floresta Dr. intersection is right-out only, causing many vehicles to U-turn down the road
- Fridays & Saturdays are horrendous. Friday evenings with motorcycles headed to beach area & again on Sundays perhaps with folks leaving beach area
- · Noise is worst at night and cars drag racing along with speeding to get through the SW Airoso Blvd signal
- After 7:00 pm and into the early morning, noise events can be heard including
 - Cars revving engines & doing burnouts at stoplights
 - Loud motorcycles
 - Cars with modified muffler/exhaust systems
 - Multiple simultaneous speeding cars/potential racing
 - Loud music from cars/motorcycles

PHASE 2-NOISE MONITORING STUDY

- The city conducted a 24-hour noise monitoring study to follow-up on the residents' concerns
- 24-hour monitoring was focused on addressing noise inquiries received from residents adjacent to Crosstown Parkway between Manth Lane to the west and the Crosstown Bridge to the east. 8 concurrent & continuous 24-hour noise monitoring sessions were conducted between 6:00 pm Thursday, February 18 (monitoring at NR16 began at 6:00 pm Friday, February 19 due to a wire malfunction) and 7:00 am Monday, February 22. The following are descriptions of the receptors/residences monitored:
 - NR14 This residence is located in a good location to capture noise at the Crosstown Parkway/Floresta Drive Superstreet
 - NR15 NR15 recorded the loudest short-term noise level (64.8 dBA Leg) during the Phase I Study
 - NR16 The residence's lanai is closely situated to the sound berm and yielded a 62.6 dBA Leq during the Phase I Study
 - NR19 Captured noise levels from westbound Crosstown Parkway traffic travelling downgrade from the Crosstown Parkway
 Bridge and braking at the eastbound to westbound Floresta Drive signalized U-turn
 - SR34 (representative of NR 33) KCI staff experienced a motorcycle interrupting our conversation as we concluded the Phase I monitoring here
 - NR13 & SR35 Several residences mentioned drag racing during the evening and early morning hours; These two locations are on opposite sides of Crosstown Parkway
 - Receptor SR36 This receptor captured vehicles accelerating upgrade to cross the bridge

PHASE 2-NOISE MONITORING STUDY

PHASE 2-24-HOUR MONITORING

- Initiated contact on Tuesday, February 2 and Wednesday, February 3 with residents selected for the 24-hour study
- 8 Larson Davis SoundAdvisor Portable Noise Monitoring Systems Model NMS044 (powered by SoundAdvisor Model 831C Class 1 sound level meter) were used to record 1-hour noise monitoring periods
- This type of noise monitoring system allowed for 24/7 remote monitoring access, recording of sound events with a 65.5 dBA Leq or greater, and solar charging

RESIDENTIAL SPEECH INTERFERENCE

- Speech Inference Level (or PSIL): Evaluates the impact of background noise on communication
- The degree to which noise disturbs speech depends on many factors, including:
 - voice level
 - background noise level
 - distance between speakers
 - room acoustics
- A primary effect of noise is its tendency to drown out or "mask" speech, making it difficult to carry on uninterrupted conversations

Source: EPA

NOISE DISTURBANCE EVENTS

Loud Music

Rec. NR15 at 9:37 pm Thursday, February 18 (85.1 L_{peak})

Possible Racing

Rec. NR14 at 10:39 pm Thursday, February 18 (87.5 Lpeak)

Motorcycle

• Rec. NR15 at 9:13 pm Friday, February 19 (87.2 Lpeak)

Modified Muffler/Exhaust System

• Rec. SR34 at 6:56 pm Saturday, February 18 (108.5 L_{peak})

Burnout

Rec. NR16 at 12:22 am Sunday, February 21 (86.9 L_{peak})

Heavy Truck

• Rec. SR35 at 5:58 am Monday, February 22 (79.8 Lpeak)

PHASE 2-NR13 MONITORING RESULTS

PHASE 2-NR13 MONITORING RESULTS

Total Potential noise Disturbance Events = 392

- Early Morning Hours = 32
- Daytime Hours = 274
- Evening Hours = 86
- Cars with modified muffler/exhaust systems = 231

*65.5 dBA Leq was the threshold used to capture noise disturbance events (events were marked by cars with modified muffler/exhaust systems, car tires, motorcycle, heavy truck, general traffic, music).

PHASE 2-NR14 MONITORING RESULTS

PHASE 2-NR14 MONITORING RESULTS

Total Potential noise Disturbance Events = 548

- Early Morning Hours = 36
- Daytime Hours = 356
- Evening Hours = 156
- Cars with modified muffler/exhaust systems = 402

*65.5 dBA Leq was the threshold used to capture noise disturbance events (events were marked by cars with modified muffler/exhaust systems, car tires, motorcycle, heavy truck, general traffic, music).

PHASE 2-NR15 MONITORING RESULTS

PHASE 2-NR15 MONITORING RESULTS

Total Potential Noise Disturbance Events = 435

- Early Morning Hours = 23
- Daytime Hours = 310
- Evening Hours = 102
- Cars with modified muffler/exhaust systems = 223
- Motorcycles = 108
- Heavy Trucks = 95

*65.5 dBA Leq was the threshold used to capture noise disturbance events (events were marked by cars with modified muffler/exhaust systems, car tires, motorcycle, heavy truck, general traffic, music).

PHASE 2-NR16 MONITORING RESULTS

PHASE 2-NR16 MONITORING RESULTS

Total Potential Noise Disturbance Events = 149

- Early Morning Hours = 13
- Daytime Hours = 73
- Evening Hours = 63
- Cars with modified muffler/exhaust systems = 81
- Motorcycles = 43

*65.5 dBA Leq was the threshold used to capture noise disturbance events (events were marked by cars with modified muffler/exhaust systems, car tires, motorcycle, heavy truck, general traffic, music).

PHASE 2-NR19 MONITORING RESULTS

Total Potential Noise Disturbance Events = 401

- Early Morning Hours = 35
- Daytime Hours = 257
- Evening Hours = 109
- Cars with modified muffler/exhaust systems = 293
- Motorcycles = 95

*65.5 dBA Leq was the threshold used to capture noise disturbance events (events were marked by cars with modified muffler/exhaust systems, car tires, motorcycle, heavy truck, general traffic, music).

PHASE 2-SR34 MONITORING RESULTS

PHASE 2-SR34 MONITORING RESULTS

Total Potential Noise Disturbance Events = 301

- Early Morning Hours = 15
- Daytime Hours = 212
- Evening Hours = 74
- Cars with modified muffler/exhaust systems = 106
- Motorcycles = 68
- Heavy Trucks = 62

*65.5 dBA Leq was the threshold used to capture noise disturbance events (events were marked by cars with modified muffler/exhaust systems, car tires, motorcycle, heavy truck, general traffic, music).

PHASE 2-SR35 MONITORING RESULTS

PHASE 2-SR35 MONITORING RESULTS

Total Potential Noise Disturbance Events = 275

- Early Morning Hours = 21
- Daytime Hours = 169
- Evening Hours = 85
- Cars with modified muffler/exhaust systems = 187

*65.5 dBA Leq was the threshold used to capture noise disturbance events (events were marked by cars with modified muffler/exhaust systems, car tires, motorcycle, heavy truck, general traffic, music).

PHASE 2-SR36 MONITORING RESULTS

PHASE 2-SR36 MONITORING RESULTS

Total Potential Noise Disturbance Events = 117

- Early Morning Hours = 4
- Daytime Hours = 75
- Evening Hours = 38
- Cars with modified muffler/exhaust systems = 99

*65.5 dBA Leq was the threshold used to capture noise disturbance events (events were marked by cars with modified muffler/exhaust systems, car tires, motorcycle, heavy truck, general traffic, music).

PHASE 2-SUMMARY

- Overall hourly dBA Leq noise levels were measured at levels below FDOT's
 "approaching" Noise Abatement Criteria (NAC) threshold of 66 dBA Leq during the
 24-hour monitoring period (with the exception of one instance highlighted at SR 34)
- As residents have expressed, annoying peak noise level events occur at levels that interfere with outdoor speech and sleeping
- These noise levels are principally generated from vehicles sporting loud exhaust systems and additional noise generators including motorcycles, and heavy trucks
- These peak noise levels wouldn't be efficiently addressed by sound barriers which provide a general mitigation benefit of 5 to 10 dBA (based on their position between the noise receiver and noise source)
- So, what can be done to address these peak noise levels?

- What we heard from several residents during the Short-Term and 24-Hour monitoring sessions:
 - A visible police presence along Crosstown Parkway helps to monitor daytime vehicle behavior
 - The city's landscape enhancement efforts have helped block views of Crosstown Parkway traffic
- Police presence effective in controlling noise disturbance events
- Noise Team observation
 - The team set up a noise meter at NR 14 around 7:00 pm on Tuesday, September 15, 2020 in attempt to capture resident described evening noise events at the Floresta Drive/Crosstown Parkway intersection
 - Shortly after starting, a police officer with his/her flashing lights pulled a vehicle over as it crossed the Port St. Lucie River Bridge along WB Crosstown Parkway
 - Traffic was clearly on its best behavior during this time (approximately 20 minutes); no loud mufflers, radios, wheel squealing, engine revving were observed

Port St. Lucie Strategic Plan:

- Current Strategic Plan development efforts highlights plans to expand the police force to address citizen requests for greater community police presence and to address speeding and aggressive driving
- "More enforcement for modified exhaust systems"
 was a city-wide concern heard during the Strategic
 Plan's public outreach program

- Florida State Statute (FSS) 316.293
 (5)(a): No person shall modify the exhaust system of a motor vehicle or any other noise-abatement device of a motor vehicle operated or to be operated upon the highways of this state in such a manner that the noise emitted by the motor vehicle is above that emitted by the vehicle as originally manufactured
- The Police Department will be working with the Communications Department to initiate a City-wide campaign focused on educating residents on illegal exhaust systems including mufflers, manifold pipes & tailpipes

Source: Loud Vehicle Exhaust Enforcement - Article

- Additional measures to augment current law enforcement operations with the goal of minimizing peak noise events include:
 - The City will be signing Crosstown Parkway as a "residential noise control area" and/or "strict enforcement area"
 - Consideration of additional evening and early morning police patrols
- The City will monitor and maintain the enhanced landscaping to block/minimize views of the parkway

Q&A DISCUSSION

